SCHEME OF COURSE WORK

Course Details:

Course Title	Computational Fluid Dynamics								
Course Code	19ME2207 L P C :3 0 3								
Program:	M.Tech. in Mechan	M.Tech. in Mechanical Engineering							
Specialization:	Thermal Engineering								
Semester	Π								
Prerequisites	Fluid Mechanics and Heat Transfer								
Courses to which it is a		Computational Fluid I	Dyna	amic	s lab				
prerequisite									

Course Outcomes (COs):

At the end of the course the student will be able to

1	Explain momentum and energy balance equations, physical behavior, definitions of finite difference, finite volume methods, and turbulence modelling
2	Apply finite difference solutions to heat transfer in slab, fin, rectangular geometry and long cylinder
3	Explain ADI method and vorticity-stream function method by FDM, discretisation using finite volume method, and implementation of boundary conditions, Thomas algorithm
4	Explain ADI method and vorticity-stream function method by FDM, discretisation using finite volume method, and implementation of boundary conditions, Thomas algorithm
5	Explain upwind differencing for convection-diffusion problems, SIMPLE and SIMPLER algorithms

Program Outcomes (POs):

- PO1:Exhibit in-depth knowledge in thermal engineering specialization
- PO2: Think critically and analyze complex engineering problems to make creative advances in theory and practice
- PO3: Solve problem, think originally and arrive at feasible and optimal solutions with due consideration to public health and safety of environment
- PO4: Use research methodologies, techniques and tools, and contribute to the development of technological knowledge
- PO5: Apply appropriate techniques, modern engineering and software tools to perform modeling of complex engineering problems knowing the limitations
- PO6: Understand group dynamics, contribute to collaborative multidisciplinary scientific research

- PO7: Demonstrate knowledge and understanding of engineering and management principles and apply the same with due consideration to economical and financial factors
- PO8: Communicate complex engineering problems with the engineering community and society, write and present technical reports effectively.
- PO9: Engage in life-long learning with a high level of enthusiasm and commitment to improve knowledge and competence continuously
- PO10: Exhibit professional and intellectual integrity, ethics of research and scholarship and will realize his/her responsibility towards the community
- PO11: Examine critically the outcomes of his/her actions and make corrective measures without depending on external feedback

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	Μ											
CO-2	Μ	Μ			Μ			Μ				
CO-3	Μ	Μ			Μ							
CO-4	Μ	Μ			Μ			М				
CO-5	S	Μ			Μ			М				

Course Outcome Versus Program Outcomes:

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment	Assignment / Quiz / Seminar / Case Study / Mid-Test/ End Exam
Methods:	Assignment / Quiz / Semmar / Case Study / Wild-Test/ End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Governing equations: Mass, momentum and energy balance equations - Conservation form of the governing equations of fluid flow - Potential flow model, Buoyancy-driven convection and Boussinesq approximation.	CO-1	 (1) Write M&E equations in non- conservation and conservation forms (2) Explain simplified flow models 	Lecture Derivations	Assignment Week 4-5)
2	Physical behavior: Classification of partial differential equations according to physical behavior as elliptic,	CO-1	(1) Explain the three classifications according to physical behavior with	Lecture / Discussion	Mid-Test 1 (Week 7)

	 parabolic and hyperbolic equations. Finite difference method: First and second derivatives in finite difference form using truncated Taylor series - grid generation, discretization. 		examples (2) Taylor series, and derivation of first and second derivatives from truncated Taylor series	Derivations Analysis	
3	Finite volume method: concept of control volume, grid generation, discretization. Introduction to turbulence modelling: Reynolds-averaged Navier-Stokes (RANS) equations for incompressible flow – turbulence models for RANS equations – the standard k-e model – Wilcox model.	CO-1	 (1) Decribe grid generation and discretization methods in FVM (2) Explain concept of turbulence, and turbulent models k-e and Wilcox 	Lecture Derivations Analysis	Quiz (Week 6)
4	 Finite difference method: (a) One dimensional steady heat conduction through a slab/rod with uniform heat source, (b) steady state heat transfer through a rectangular/circular fin, 	CO-2	Explain grid generation and discretization by FDM (1) for ss heat conduction in a slab (2) for ss heat transfer in a fin	Lecture Derivations and analysis	
5	 (c) steady state two- dimensional heat conduction in rectangular geometry with uniform heat source, (d) steady radial heat conduction in a long solid cylinder 	CO-2	Explain grid generation and discretization by FDM (1) ss 2-D heat conduction in rectangular geometry (2) in radial geometry in a long cylinder	Lecture Derivations Analysis	
6	(e) Transient one-dimensional heat conduction by explicit and Crank- Nicolson's implicit methods.	CO-2	Explain solution method for 1-D transient heat conduction in a slab/rod by (1) explicit method (2) Crank-Nicolson implicit scheme	Lecture Derivations Analysis	

7					
/	Mid-I Examination				
8	ADI method: Solution of transient two-dimensional heat conduction equation by Alternating Direction Implicit method.	CO-3	Solve problem of 2-D transient heat conduction by ADI method	Lecture Derivations Analysis	
9	Vorticity-Stream function method: Definitions of vorticity and stream function - problem of two- dimensional incompressible viscous flow in a lid-driven cavity by vorticity- stream function method	CO-3	Solve problem of 2- D laminar flow by vorticity - stream function method	Lecture Derivations Analysis	
10, 11	Finite volume method: Application to one-dimensional steady state heat conduction in a slab/rod with source term - Implementation of boundary conditions - solution using Thomas algorithm.	CO-3	 (1) Solve problem of 1-D ss heat conduction problem by finite volume method (2) Describe method of implementation of boundary conditions (3) Explain solution by Thomas algorithm 	Lecture Derivations Analysis	
12	Steady diffusion: Finite volume method for heat transfer from a fin - grid generation - discretization - solution Finite volume method for two- dimensional diffusion problem	CO-4	 (1) Describe solution method for steady heat transfer from a fin by FVM (2) Solve 2-D diffusion problem by finite volume method 	Lecture Derivations Analysis	Mid-Test 2 (Week 18)
13	Transient diffusion: Finite volume method for one- dimensional transient heat conduction – explicit and implicit schemes.	CO-4	Solve problem of transient 1-D heat conduction by (a) explicit method, (b) implicit scheme by finite volume discretization	Lecture Derivations Analysis	Case Study (Week 10 - 14)
14	Convection-diffusion: One- dimensional convection diffusion using central differencing scheme Properties of discretization schemes:	CO-4	(1) Explain central differencing scheme in discretization of convection-diffusion problems	Lecture Derivations Analysis	

15	Conservativeness, boundedness, transportiveness. Upwind differencing scheme: One-dimensional convection diffusion using upwind differencing scheme - assessment of central and upwind differencing schemes for conservativeness, boundedness and transportiveness – hybrid differencing scheme.	CO-5	 (2) Describe properties of discretization schemes (1) Explain upwind and hybrid differencing schemes (2) Compare central and upwind differencing schemes w.r.t. the trasportiveness property 	Lecture Derivations Analysis	
16, 17	Pressure linked momentum balance equations: u- and v- momentum balance equations with pressure gradient in internal flow - concept of staggered grid SIMPLE algorithm: Discretisation of momentum equations – pressure correction equation – under relaxation – flowchart for SIMPLE algorithm –	CO-5	 (1) Explain (a) pressure linked equations, and (b) staggered grid (2) Obtain discretized momentum equation (3) Draw the flowchart and explain SIMPLE algorithm 	Lecture Problem solving	
18	SIMPLER algorithm – pressure equation – flow chart for SIMPLER algorithm	CO-5	 (1) How is SIMPLER algorithm different from SIMPLE algorithm (2) Draw flow chart for SIMPLER algorithm 	Lecture Derivations Analysis	Seminar (Week 15)
19	Mid-II Examination				
20	End Semester Examination				

,